5.4 Indefinite Integrals and the Net Change Theorem/23: Difference between revisions
Jump to navigation
Jump to search
(Created page with "<math> \int\limits_{-1}^{0}(2x-e^x)dx </math> <math> =\int\limits_{-1}^{0}2xdx-\int\limits_{-1}^{0}e^xdx=-1-(-1-\frac{1}{e})=\frac{1}{e}-2 </math>") |
m (Protected "5.4 Indefinite Integrals and the Net Change Theorem/23" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
| (8 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
<math> | <math> | ||
\ | \begin{align} | ||
\int_{-1}^{0}(2x-e^x)dx &=\left[\frac{2x^2}{2}-e^x\right]_{-1}^{0} \\[2ex] | |||
&= [0^{2}-e^{0}]-[(-1)^2-e^{-1}] \\[2ex] | |||
=\ | &=-1-\left(1-\frac{1}{e}\right) \\[2ex] | ||
&=\frac{1}{e}-2 | |||
\end{align} | |||
</math> | </math> | ||
Latest revision as of 19:40, 21 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{-1}^{0}(2x-e^x)dx &=\left[\frac{2x^2}{2}-e^x\right]_{-1}^{0} \\[2ex] &= [0^{2}-e^{0}]-[(-1)^2-e^{-1}] \\[2ex] &=-1-\left(1-\frac{1}{e}\right) \\[2ex] &=\frac{1}{e}-2 \end{align} }