5.4 Indefinite Integrals and the Net Change Theorem/37: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
= \int_{0}^{\frac{\pi}{4}}\left(\sec^2(\theta) + 1\right)d\theta \\[2ex]
= \int_{0}^{\frac{\pi}{4}}\left(\sec^2(\theta) + 1\right)d\theta \\[2ex]


&= \left\tan({\theta}) + \theta \right]\Bigg|_{0}^{\frac{\pi}{4}}\\[2ex]
&= \tan({\theta}) + \theta \Bigg|_{0}^{\frac{\pi}{4}}\\[2ex]


&= \left[\tan\left({\frac{\pi}{4}}\right) + \frac{\pi}{4}\right] - \left[\tan{0} + 0\right] \\[2ex]
&= \left[\tan\left({\frac{\pi}{4}}\right) + \frac{\pi}{4}\right] - \left[\tan{0} + 0\right] \\[2ex]

Revision as of 16:07, 21 September 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{0}^{\frac {\pi }{4}}\left({\frac {1+\cos ^{2}(\theta )}{\cos ^{2}(\theta )}}\right)d\theta &=\int _{0}^{\frac {\pi }{4}}\left({\frac {1}{\cos ^{2}(\theta )}}+{\frac {\cos ^{2}(\theta )}{\cos ^{2}(\theta )}}\right)d\theta =\int _{0}^{\frac {\pi }{4}}\left(\sec ^{2}(\theta )+1\right)d\theta \\[2ex]&=\tan({\theta })+\theta {\Bigg |}_{0}^{\frac {\pi }{4}}\\[2ex]&=\left[\tan \left({\frac {\pi }{4}}\right)+{\frac {\pi }{4}}\right]-\left[\tan {0}+0\right]\\[2ex]&=1+{\frac {\pi }{4}}\end{aligned}}}