5.4 Indefinite Integrals and the Net Change Theorem/37: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}


& \int_{0}^{\frac{\pi}{4}}\left(\frac{1+\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta \ = \ \int_{0}^{\frac{\pi}{4}}\frac{1}{\cos^2(\theta)} + \frac{\cos^2(\theta)}{\cos^2(\theta)} \ =    \ \int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^2(\theta)} + 1 \\[2ex]
\int_{0}^{\frac{\pi}{4}}\left(\frac{1+\cos^2(\theta)}{\cos^2(\theta)}\right)d\theta &=
 
\int_{0}^{\frac{\pi}{4}}\frac{1}{\cos^2(\theta)} + \frac{\cos^2(\theta)}{\cos^2(\theta)} \\[2ex]
 
\int_{0}^{\frac{\pi}{4}} \frac{1}{\cos^2(\theta)} + 1 \\[2ex]


& =\tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}}\\[2ex]
& =\tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}}\\[2ex]

Revision as of 15:57, 21 September 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{0}^{\frac {\pi }{4}}\left({\frac {1+\cos ^{2}(\theta )}{\cos ^{2}(\theta )}}\right)d\theta &=\int _{0}^{\frac {\pi }{4}}{\frac {1}{\cos ^{2}(\theta )}}+{\frac {\cos ^{2}(\theta )}{\cos ^{2}(\theta )}}\\[2ex]\int _{0}^{\frac {\pi }{4}}{\frac {1}{\cos ^{2}(\theta )}}+1\\[2ex]&=\tan({\theta })+\theta \ {\bigg |}_{0}^{\frac {\pi }{4}}\\[2ex]&=\tan({\frac {\pi }{4}})+{\frac {\pi }{4}}\\[2ex]&=1+{\frac {\pi }{4}}\end{aligned}}}