5.4 Indefinite Integrals and the Net Change Theorem/29: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<math> | <math> | ||
\int_{2}^{-1}\left(4y^3+\frac{2}{y^3}\right)dy | \begin{align} | ||
= y^4-y^-2\ | |||
= (1-1)-\left(16-\frac{1}{4}\right) | \int_{-2}^{-1}\left(4y^3+\frac{2}{y^3}\right)dy \\[2ex] | ||
= \frac{-63}{4} | &= \left[y^4-y^-2\right]_{-2}^{-1} \\[2ex] | ||
&= (1-1)-\left(16-\frac{1}{4}\right) \\[2ex] | |||
&= \frac{-63}{4} | |||
\end{align} | |||
</math> | </math> | ||
Revision as of 15:17, 21 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{-2}^{-1}\left(4y^3+\frac{2}{y^3}\right)dy \\[2ex] &= \left[y^4-y^-2\right]_{-2}^{-1} \\[2ex] &= (1-1)-\left(16-\frac{1}{4}\right) \\[2ex] &= \frac{-63}{4} \end{align} }