5.3 The Fundamental Theorem of Calculus: Difference between revisions
Jump to navigation
Jump to search
| Line 8: | Line 8: | ||
: <math>\frac{d}{dx}\int_{a(x)}^{b(x)}f(t)dt=b'(x)f(b(x))-a'(x)f(a(x))</math><br><br> | : <math>\frac{d}{dx}\int_{a(x)}^{b(x)}f(t)dt=b'(x)f(b(x))-a'(x)f(a(x))</math><br><br> | ||
:2. FTC #2 <br> | :2. FTC #2 <br> | ||
: <math>\int_{a}^{b}f(x)dx=F(b)-F(a)</math> | : <math>\int_{a}^{b}f(x)dx=F(b)-F(a)</math><br> Where <math>\frac{d}{dx}F(x)=f(x)</math> | ||
Revision as of 16:37, 23 August 2022
Lecture
Lecture notes
- 1. FTC #1
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}\int_{a(x)}^{b(x)}f(t)dt=b'(x)f(b(x))-a'(x)f(a(x))}
- 2. FTC #2
- Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{a}^{b}f(x)dx=F(b)-F(a)}
Where Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}F(x)=f(x)}