5.4 Indefinite Integrals and the Net Change Theorem/23: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math>
<math>
\int\limits_{-1}^{0}(2x-e^x)dx
\int_{-1}^{0}(2x-e^x)dx
</math>
</math>


<math>
<math>
=\int\limits_{-1}^{0}2xdx-\int\limits_{-1}^{0}e^xdx
=\int_{-1}^{0}2xdx-\int\limits_{-1}^{0}e^xdx
</math>
</math>



Revision as of 14:55, 21 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{-1}^{0}(2x-e^x)dx }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle =\int_{-1}^{0}2xdx-\int\limits_{-1}^{0}e^xdx }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle =-1-(1-\frac{1}{e})=\frac{1}{e}-2 }