5.4 Indefinite Integrals and the Net Change Theorem/31: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 4: | Line 4: | ||
\int_{0}^{1}x\left(\sqrt[3]{x}+\sqrt[4]{x}\right)dx &=\int_{0}^{1}x\left(x^{\frac{1}{3}} | \int_{0}^{1}x\left(\sqrt[3]{x}+\sqrt[4]{x}\right)dx &=\int_{0}^{1}x\left(x^{\frac{1}{3}}+x^{\frac{1}{4}}\right)dx | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 20:08, 20 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{1}x\left(\sqrt[3]{x}+\sqrt[4]{x}\right)dx &=\int_{0}^{1}x\left(x^{\frac{1}{3}}+x^{\frac{1}{4}}\right)dx \end{align} }