6.1 Areas Between Curves/7: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
(Created page with "<math>f(x)=x</math> <math>g(x)=x^2</math> <math>Pi\int_{a}^{b}\(R-r)dx</math> <math>R=x</math> <math>r=x^2</math> <math>\int_{0}^{1}\(x-x^2)dx</math> <math>\frac{x^2}{2}-\frac{x^3}{3}\bigg|_{0}^{1}</math> <math>\frac{1^2}{2}-\frac{1^3}{3}-\frac{0^2}{2}-\frac{0^3}{3} <math\>\frac{1}{6}/math>")
 
No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
<math>f(x)=x</math>
<math>f(x)=x</math>
<math>(0,0)</math>
<math>(1,1)</math>


<math>g(x)=x^2</math>
<math>g(x)=x^2</math>


<math>Pi\int_{a}^{b}\(R-r)dx</math>
<math>\int_{0}^{1}\left(R-r\right)dx</math>
 
<math>R=x</math> <math>r=x^2</math>
<math>R=x</math>
 
<math>r=x^2</math>


<math>\int_{0}^{1}\(x-x^2)dx</math>
<math>\int_{0}^{1}\left(x-x^2\right)dx</math>


<math>\frac{x^2}{2}-\frac{x^3}{3}\bigg|_{0}^{1}</math>
<math>\frac{x^2}{2}-\frac{x^3}{3}\bigg|_{0}^{1}</math>


<math>\frac{1^2}{2}-\frac{1^3}{3}-\frac{0^2}{2}-\frac{0^3}{3}
<math>=\frac{1^2}{2}-\frac{1^3}{3}-\frac{0^2}{2}-\frac{0^3}{3}</math>
 
<math>=\frac{1}{6}</math>


<math\>\frac{1}{6}/math>
[[File:Desmos-graph200.png|left|200 px|]]

Latest revision as of 19:51, 20 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle f(x)=x}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (0,0)} Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle (1,1)}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g(x)=x^2}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{1}\left(R-r\right)dx}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle R=x}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle r=x^2}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{1}\left(x-x^2\right)dx}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{x^2}{2}-\frac{x^3}{3}\bigg|_{0}^{1}}

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle ={\frac {1^{2}}{2}}-{\frac {1^{3}}{3}}-{\frac {0^{2}}{2}}-{\frac {0^{3}}{3}}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle =\frac{1}{6}}

Desmos-graph200.png