6.1 Areas Between Curves/10: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 11: Line 11:
</math>
</math>


 
<math>1+\sqrt{x} = \frac{3+x}{3} \\</math>
<math>  
<math>  
\begin{align}
\begin{align}
&1+\sqrt{x} = \frac{3+x}{3} \\
&= 1+\sqrt{x}-\frac{3+x}{3} = 0 \\
&= 1+\sqrt{x}-\frac{3+x}{3} = 0 \\
&= \frac{3+3\sqrt{x}}{3}-\frac{3+x}{3} = 0 \\
&= \frac{3+3\sqrt{x}}{3}-\frac{3+x}{3} = 0 \\

Revision as of 04:42, 20 September 2022

Desmos-graphs.png

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} & \color{red}\mathbf{y=1+\sqrt{x}} & \color{royalblue}\mathbf{y=\frac{3+x}{3}} \\ \\ \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1+\sqrt{x} = \frac{3+x}{3} \\} Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}&=1+{\sqrt {x}}-{\frac {3+x}{3}}=0\\&={\frac {3+3{\sqrt {x}}}{3}}-{\frac {3+x}{3}}=0\\&=3+3{\sqrt {x}}-3+x=0\\&=3{\sqrt {x}}+x=0\\&=3{\sqrt {x}}=-x\\&=9x=x^{2}\\&=9x-x^{2}=0\\&=x(9-x)=0\\&=x=0,9\end{aligned}}}