6.1 Areas Between Curves/22: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(23 intermediate revisions by the same user not shown)
Line 18: Line 18:


<math>
<math>
\int_{0}^{1} \left(\sin\left(\frac{x\pi}{2}\right) - x\right)dx
\int_{0}^{1} \left(\sin\left(\frac{x\pi}{2}\right) - x\right)dx = \int_{0}^{1}\left(\sin\left(\frac{\pi}{2}\right)\right)dx - \int_{0}^{1} (x)dx = \frac{2}{\pi} - \frac{1}{2}


</math>
</math>
Line 24: Line 24:
<math>
<math>
\begin{align}
\begin{align}
\int_{0}^{1} \left(\sin(\frac{x\pi}{2})\right)dx \\
\int_{0}^{1} \left(\sin\left(\frac{x\pi}{2}\right)\right)dx \\
& u = \frac{x\pi}{2} \\
u = \frac{x\pi}{2} \\
& du = \frac{\pi}{2}dx  \\
du = \frac{\pi}{2}dx  \\
& \frac{2}{\pi}du=dx  \\
\frac{2}{\pi}du =dx  \\


\end{align}
\end{align}
Line 37: Line 37:


<math>
<math>
\int_{0}^{1} \left(\sin(\frac{x\pi}{2})\right)dx &= \int_{0}^{\frac{\pi}{2}} \sin(u)du  
\begin{align}
\int_{0}^{1} \left(\sin\left(\frac{x\pi}{2}\right)\right) dx &= \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin(u) du \\
 
&= \frac{2}{\pi} \left[-\cos(u)\right]\Bigg|_{0}^{\frac{\pi}{2}} \\
&= \frac{2}{\pi} \left[-\cos(\frac{\pi}{2})+\cos(0)\right] \\
&= \frac{2}{\pi} [0+1] = \frac{2}{\pi} \\
 
\end{align}
</math>
 
<math>
\begin{align}
\int_{0}^{1} x dx &= \left[\frac{x^2}{2}\right]\Bigg|_{0}^{1} \\
&= \frac{1}{2} - 0 = \frac{1}{2} \\
 
\end{align}
</math>
</math>

Latest revision as of 03:29, 20 September 2022

Desmos-22.png Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} & \color{red}\mathbf{y= \sin(\frac{\pi x}{2})} & \color{royalblue}\mathbf{y=x} \\ \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \sin(\frac{x\pi}{2}) &= x \\ x &= 0 \\ x &=1 \\ \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{1} \left(\sin\left(\frac{x\pi}{2}\right) - x\right)dx = \int_{0}^{1}\left(\sin\left(\frac{\pi}{2}\right)\right)dx - \int_{0}^{1} (x)dx = \frac{2}{\pi} - \frac{1}{2} }

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{0}^{1}\left(\sin \left({\frac {x\pi }{2}}\right)\right)dx\\u={\frac {x\pi }{2}}\\du={\frac {\pi }{2}}dx\\{\frac {2}{\pi }}du=dx\\\end{aligned}}}

New upper limit: Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {(0)\pi }{2}}=0}

New lower limit: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{(1)\pi}{2} = \frac{\pi}{2} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{1} \left(\sin\left(\frac{x\pi}{2}\right)\right) dx &= \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin(u) du \\ &= \frac{2}{\pi} \left[-\cos(u)\right]\Bigg|_{0}^{\frac{\pi}{2}} \\ &= \frac{2}{\pi} \left[-\cos(\frac{\pi}{2})+\cos(0)\right] \\ &= \frac{2}{\pi} [0+1] = \frac{2}{\pi} \\ \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{1} x dx &= \left[\frac{x^2}{2}\right]\Bigg|_{0}^{1} \\ &= \frac{1}{2} - 0 = \frac{1}{2} \\ \end{align} }