6.1 Areas Between Curves/22: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(45 intermediate revisions by the same user not shown)
Line 9: Line 9:


<math>
<math>
\sin(\frac{\pix}{2} = x
\begin{align}
x= 0
\sin(\frac{x\pi}{2}) &= x \\
x=1
x &= 0 \\
x &=1 \\
 
\end{align}
</math>
 
<math>
\int_{0}^{1} \left(\sin\left(\frac{x\pi}{2}\right) - x\right)dx = \int_{0}^{1}\left(\sin\left(\frac{\pi}{2}\right)\right)dx - \int_{0}^{1} (x)dx = \frac{2}{\pi} - \frac{1}{2}
 
</math>
 
<math>
\begin{align}
\int_{0}^{1} \left(\sin\left(\frac{x\pi}{2}\right)\right)dx \\
u = \frac{x\pi}{2} \\
du = \frac{\pi}{2}dx  \\
\frac{2}{\pi}du =dx  \\
 
\end{align}
</math>
 
New upper limit: <math>\frac{(0)\pi}{2}=0 </math>
 
New lower limit: <math>\frac{(1)\pi}{2} = \frac{\pi}{2} </math>
 
<math>
\begin{align}
\int_{0}^{1} \left(\sin\left(\frac{x\pi}{2}\right)\right) dx &= \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin(u) du \\
 
&= \frac{2}{\pi} \left[-\cos(u)\right]\Bigg|_{0}^{\frac{\pi}{2}} \\
&= \frac{2}{\pi} \left[-\cos(\frac{\pi}{2})+\cos(0)\right] \\
&= \frac{2}{\pi} [0+1] = \frac{2}{\pi} \\
 
\end{align}
</math>
 
<math>
\begin{align}
\int_{0}^{1} x dx &= \left[\frac{x^2}{2}\right]\Bigg|_{0}^{1} \\
&= \frac{1}{2} - 0 = \frac{1}{2} \\
 
\end{align}
</math>
</math>

Latest revision as of 03:29, 20 September 2022

Desmos-22.png Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}&\color {red}\mathbf {y=\sin({\frac {\pi x}{2}})} &\color {royalblue}\mathbf {y=x} \\\end{aligned}}}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \sin(\frac{x\pi}{2}) &= x \\ x &= 0 \\ x &=1 \\ \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{1} \left(\sin\left(\frac{x\pi}{2}\right) - x\right)dx = \int_{0}^{1}\left(\sin\left(\frac{\pi}{2}\right)\right)dx - \int_{0}^{1} (x)dx = \frac{2}{\pi} - \frac{1}{2} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{1} \left(\sin\left(\frac{x\pi}{2}\right)\right)dx \\ u = \frac{x\pi}{2} \\ du = \frac{\pi}{2}dx \\ \frac{2}{\pi}du =dx \\ \end{align} }

New upper limit: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{(0)\pi}{2}=0 }

New lower limit: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{(1)\pi}{2} = \frac{\pi}{2} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{1} \left(\sin\left(\frac{x\pi}{2}\right)\right) dx &= \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} \sin(u) du \\ &= \frac{2}{\pi} \left[-\cos(u)\right]\Bigg|_{0}^{\frac{\pi}{2}} \\ &= \frac{2}{\pi} \left[-\cos(\frac{\pi}{2})+\cos(0)\right] \\ &= \frac{2}{\pi} [0+1] = \frac{2}{\pi} \\ \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{1} x dx &= \left[\frac{x^2}{2}\right]\Bigg|_{0}^{1} \\ &= \frac{1}{2} - 0 = \frac{1}{2} \\ \end{align} }