6.1 Areas Between Curves/22: Difference between revisions
No edit summary |
No edit summary |
||
| Line 24: | Line 24: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\int_{0}^{1} \left(\sin(\frac{x\pi}{2})\right)dx &= \int_{0}^{\frac{\pi}{2}} \sin(u)du | \int_{0}^{1} \left(\sin(\frac{x\pi}{2})\right)dx &= \int_{0}^{\frac{\pi}{2}} \sin(u)du \\ | ||
& u = \frac{x\pi}{2} | & u = \frac{x\pi}{2} \\ | ||
& du = \frac{\pi}{2}dx | & du = \frac{\pi}{2}dx \\ | ||
& \frac{2}{\pi}du=dx | & \frac{2}{\pi}du=dx \\ | ||
& b= \frac{(0)\pi}{2} = 0 | & b= \frac{(0)\pi}{2} = 0 \\ | ||
& a= \frac{(1)\pi}{2} = \frac{\pi}{2} | & a= \frac{(1)\pi}{2} = \frac{\pi}{2} \\ | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 03:00, 20 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} & \color{red}\mathbf{y= \sin(\frac{\pi x}{2})} & \color{royalblue}\mathbf{y=x} \\ \end{align} }
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\sin({\frac {x\pi }{2}})&=x\\x&=0\\x&=1\\\end{aligned}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{1} \left(\sin\left(\frac{x\pi}{2}\right) - x\right)dx }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{1} \left(\sin(\frac{x\pi}{2})\right)dx &= \int_{0}^{\frac{\pi}{2}} \sin(u)du \\ & u = \frac{x\pi}{2} \\ & du = \frac{\pi}{2}dx \\ & \frac{2}{\pi}du=dx \\ & b= \frac{(0)\pi}{2} = 0 \\ & a= \frac{(1)\pi}{2} = \frac{\pi}{2} \\ \end{align} }