6.1 Areas Between Curves/19: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 28: Line 28:
=\int_{-2}^{2} [4-y^2]dy \\
=\int_{-2}^{2} [4-y^2]dy \\


=4y-\frac{y^3}{3} \int_{2}^{-2}
=4y-\frac{y^3}{3} |_{-2}^{2}\\




=4(2)-\frac{(2)^3}{3}-(4(-2)-\frac{(-2)^3}{3})\\
=8-\frac{8}{3}-(-8+\frac{8}{3})\\
=16-\frac{16}{3}\\
=\frac{48}{3}-\frac{16}{3}\\
=\frac{32}{3}\\
\end{align}
\end{align}
</math>
</math>

Revision as of 00:55, 18 September 2022

6.1.19 graph.png

19)

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} & \color{red} \mathbf{x=4+y^2} & \color{royalblue}\mathbf{x=2y^2} \\ \end{align} }

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} 4+y^2 &= 2y^2 \\ 4 &=y^2 \\ y &=\sqrt{4} \\ y &= \pm2 \\ \int_{-2}^{2} [(4+y^2)-(2y^2)]dy \\ =\int_{-2}^{2} [4-y^2]dy \\ =4y-\frac{y^3}{3} |_{-2}^{2}\\ =4(2)-\frac{(2)^3}{3}-(4(-2)-\frac{(-2)^3}{3})\\ =8-\frac{8}{3}-(-8+\frac{8}{3})\\ =16-\frac{16}{3}\\ =\frac{48}{3}-\frac{16}{3}\\ =\frac{32}{3}\\ \end{align} }


5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 25 27