5.5 The Substitution Rule/21: Difference between revisions
No edit summary Tag: Manual revert |
No edit summary |
||
| (One intermediate revision by the same user not shown) | |||
| Line 8: | Line 8: | ||
u &= \sqrt{t} \\[2ex] | u &= \sqrt{t} \\[2ex] | ||
du &= \frac{1}{2}\ \frac{1}{\sqrt{t}}\;dt \\[2ex] | du &= (\frac{1}{2}\ \frac{1}{\sqrt{t}})\;dt \\[2ex] | ||
2du &= \frac{1}{\sqrt{t}}\;dt | 2du &= \frac{1}{\sqrt{t}}\;dt | ||
\end{align} | \end{align} | ||
| Line 17: | Line 17: | ||
\begin{align} | \begin{align} | ||
\int \frac{ | \int \frac{1}{\sqrt{t}}\cos{(\sqrt{t})} dt &= 2\int \cos {u}\;du \\[2ex] | ||
&= 2 \sin{u}+c \\[2ex] | &= 2 \sin{u}+c \\[2ex] | ||
&= 2 \sin(\sqrt{t}) + c \\[2ex] | &= 2 \sin(\sqrt{t}) + c \\[2ex] | ||
Latest revision as of 23:27, 13 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int \frac{\cos{(\sqrt{t})}}{\sqrt{t}}\;dt }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \sqrt{t} \\[2ex] du &= (\frac{1}{2}\ \frac{1}{\sqrt{t}})\;dt \\[2ex] 2du &= \frac{1}{\sqrt{t}}\;dt \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int \frac{1}{\sqrt{t}}\cos{(\sqrt{t})} dt &= 2\int \cos {u}\;du \\[2ex] &= 2 \sin{u}+c \\[2ex] &= 2 \sin(\sqrt{t}) + c \\[2ex] \end{align} }