5.5 The Substitution Rule/21: Difference between revisions
No edit summary |
No edit summary |
||
| Line 17: | Line 17: | ||
\begin{align} | \begin{align} | ||
\int \frac{ | \int \frac{1}}{\sqrt{t}}\cos{(\sqrt{t}) dt &= 2\int \cos {u}\;du \\[2ex] | ||
&= 2 \sin{u}+c \\[2ex] | &= 2 \sin{u}+c \\[2ex] | ||
&= 2 \sin(\sqrt{t}) + c \\[2ex] | &= 2 \sin(\sqrt{t}) + c \\[2ex] | ||
Revision as of 23:24, 13 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int \frac{\cos{(\sqrt{t})}}{\sqrt{t}}\;dt }
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}u&={\sqrt {t}}\\[2ex]du&={\frac {1}{2}}\ {\frac {1}{\sqrt {t}}}\;dt\\[2ex]2du&={\frac {1}{\sqrt {t}}}\;dt\end{aligned}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int \frac{1}}{\sqrt{t}}\cos{(\sqrt{t}) dt &= 2\int \cos {u}\;du \\[2ex] &= 2 \sin{u}+c \\[2ex] &= 2 \sin(\sqrt{t}) + c \\[2ex] \end{align} }