5.5 The Substitution Rule/41: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 18: Line 18:
<math>
<math>
\begin{align}
\begin{align}
  \int \frac{1}{\sqrt{1-x^{2}}} \frac{1}{\arcsin {x}
  \int \frac{1}{\sqrt{1-x^{2}}} \frac{1}{\arcsin {x}}
&= \int \frac{1}{u} du \\[2ex]
&= \int \frac{1}{u} du \\[2ex]
&= \ln |u| +c \\[2ex]
&= \ln |u| +c \\[2ex]

Revision as of 23:13, 13 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int \frac{1}{\sqrt{1-x^{2}} \arcsin {x}} }


Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \arcsin {x} \\[2ex] du &= \frac{1}{\sqrt{1-x^2}} dx \\[2ex] \end{align} }


Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int {\frac {1}{\sqrt {1-x^{2}}}}{\frac {1}{\arcsin {x}}}&=\int {\frac {1}{u}}du\\[2ex]&=\ln |u|+c\\[2ex]&=\ln |\arcsin {x}|+c\\[2ex]\end{aligned}}}