5.5 The Substitution Rule/65: Difference between revisions
No edit summary |
No edit summary |
||
| Line 19: | Line 19: | ||
\begin{align} | \begin{align} | ||
\int_{1}^{2} x \sqrt{x-1}\,dx &= \int_{0}^{1} (u+1) \sqrt{u}\,du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} u^ \frac{3}{2} + \sqrt{u}du \\[2ex] | \int_{1}^{2} x \sqrt{x-1}\,dx &= \int_{0}^{1} (u+1) \sqrt{u}\,du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} u^ \frac{3}{2} + \sqrt{u}du \\[2ex] | ||
&= \frac{2}{5} (u^\frac{5}{2} + \frac{2}{3} u^\frac{3}{2}\bigg| | &= \frac{2}{5} (u^\frac{5}{2} + \frac{2}{3} u^\frac{3}{2})\bigg| _{0}^{1} =\frac{2}{5} + \frac{2}{3} \\[2ex] | ||
&= \frac{16}{15}\\[2ex] | &= \frac{16}{15}\\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 23:00, 13 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{1}^{2} x \sqrt{x-1} dx }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= x-1 \\ u+1 &= x \\[2ex] du &= 1 dx \\[2ex] du &= dx \end{align} }
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{1}^{2}x{\sqrt {x-1}}\,dx&=\int _{0}^{1}(u+1){\sqrt {u}}\,du=\int _{0}^{1}(u+1)({\sqrt {u}})=\int _{0}^{1}u^{\frac {3}{2}}+{\sqrt {u}}du\\[2ex]&={\frac {2}{5}}(u^{\frac {5}{2}}+{\frac {2}{3}}u^{\frac {3}{2}}){\bigg |}_{0}^{1}={\frac {2}{5}}+{\frac {2}{3}}\\[2ex]&={\frac {16}{15}}\\[2ex]\end{aligned}}}