5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 8: Line 8:


Or,
Or,


<math>
<math>
Line 15: Line 16:
\int\sec^2\alpha \,d\alpha = \tan{\alpha}+C
\int\sec^2\alpha \,d\alpha = \tan{\alpha}+C
</math>
</math>


Note: <math>\cos^2\alpha+sin^2\alpha=1</math>
Note: <math>\cos^2\alpha+sin^2\alpha=1</math>

Revision as of 17:51, 13 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int(1+\tan^2{\alpha})\,d\alpha = \int\sec^2\alpha \,d\alpha = \tan\alpha + C }


Note: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1+\tan^2{\alpha} = \sec^2\alpha}


Or,



Note: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \cos^2\alpha+sin^2\alpha=1}