5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 2: | Line 2: | ||
\int(1+\tan^2{\alpha})\,d\alpha = \int\sec^2\alpha \,d\alpha = \tan\alpha + C | \int(1+\tan^2{\alpha})\,d\alpha = \int\sec^2\alpha \,d\alpha = \tan\alpha + C | ||
</math> | </math> | ||
Note: <math>1+\tan^2{\alpha} = \sec^2\alpha</math> | Note: <math>1+\tan^2{\alpha} = \sec^2\alpha</math> | ||
Revision as of 17:46, 13 September 2022
Note: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1+\tan^2{\alpha} = \sec^2\alpha}
Or,
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}1+tan^2xdx = \int_{}^{}1+\frac{sin^2x}{cos^2x}dx = \int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx \cos^2x+sin^2x=1 \int_{}^{}\frac{1}{cos^2x}dx = \int_{}^{}\sec^2xdx = tanx+C }