5.4 Indefinite Integrals and the Net Change Theorem/17: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
17)<math>\int_{}^{}1+tan^2xdx | 17)<math>\int_{}^{}1+tan^2xdx = | ||
\int_{}^{}1+\frac{sin^2x}{cos^2x}dx = | |||
\int_{}^{}\frac{cos^2x+sin^2x}{cos^2x}dx | |||
\cos^2x+sin^2x=1 | |||
\int_{}^{}\frac{1}{cos^2x}dx = | |||
\int_{}^{}\sec^2xdx = | |||
tanx+C | |||
</math> | |||
Revision as of 17:41, 13 September 2022
17)Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{}^{}1+tan^{2}xdx=\int _{}^{}1+{\frac {sin^{2}x}{cos^{2}x}}dx=\int _{}^{}{\frac {cos^{2}x+sin^{2}x}{cos^{2}x}}dx\cos ^{2}x+sin^{2}x=1\int _{}^{}{\frac {1}{cos^{2}x}}dx=\int _{}^{}\sec ^{2}xdx=tanx+C}