5.4 Indefinite Integrals and the Net Change Theorem/11: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<math> | <math> | ||
\begin{ | \begin{align} | ||
\int\frac{x^3-2\sqrt{x}}{x}dx &= \int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx = x^2-2x^\frac{-1}{2}dx = | \int\frac{x^3-2\sqrt{x}}{x}dx &= \int_{}^{}\frac{x^3}{x}-\frac{2\sqrt{x}}{x}dx = x^2-2x^\frac{-1}{2}dx = | ||
Revision as of 17:27, 13 September 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int {\frac {x^{3}-2{\sqrt {x}}}{x}}dx&=\int _{}^{}{\frac {x^{3}}{x}}-{\frac {2{\sqrt {x}}}{x}}dx=x^{2}-2x^{\frac {-1}{2}}dx={\frac {x^{3}}{3}}-{\frac {2x^{\frac {1}{2}}}{\frac {1}{2}}}+C={\frac {1}{3}}x^{3}-4{\sqrt {x}}+C\end{aligned}}}