5.4 Indefinite Integrals and the Net Change Theorem/3: Difference between revisions
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<math> | |||
\int\cos^{3}xdx = \sin{x}-\frac{1}{3}\sin^{3}x+C | |||
</math> | |||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} +C]} \\[2ex] | \frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} +C]} \\[2ex] | ||
Revision as of 17:14, 13 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int\cos^{3}xdx = \sin{x}-\frac{1}{3}\sin^{3}x+C }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d}{dx} {[\sin{x} - \frac{1}{3} \sin^3{x} +C]} \\[2ex] & ={\cos{x} - \frac{1}{3}\cdot 3\sin^2{x} \cos{x} +0} \\[2ex] & =\cos{x} - \sin^2{x}\cos{x} \\[2ex] & =\cos{x} - (1-cos^2(x))\cos{x} \\[2ex] & = \cos^3{x} \end{align} }
Note: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1-\cos^2(x) = \sin^2(x) }