5.5 The Substitution Rule/45: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 17: Line 17:
\begin{align}
\begin{align}


\int_{}^{} \left(\frac {x}{\sqrt[4]{x+2}}\right)dx &=\int_{}^{} \left(\frac{u-2}{\sqrt[4]{u}}\right) \\[2ex]
\int_{}^{} \left(\frac {x}{\sqrt[4]{x+2}}\right)dx &=\int_{}^{} \left(\frac{u-2}{\sqrt[4]{u}}\right)du \\[2ex]
&=\int_{}^{} \left(\frac{u}{\sqrt[4](u)} - \frac{2}{\sqrt[4](u)}\right) \\[2ex]
&=\int_{}^{} \left(\frac{u}{\sqrt[4](u)} - \frac{2}{\sqrt[4](u)}\right)du \\[2ex]
&=\int_{}^{} \left(u^{\frac{3}{4}} - 2u^{-\frac{1}{u}} \right) \\[2ex]
&=\int_{}^{} \left(u^{\frac{3}{4}} - 2u^{-\frac{1}{u}} \right)du \\[2ex]
&= \frac{4}{7} u^{\frac{7}{4}} - 2(\frac{4}{3})u^{\frac{3}{4}} + c \\[2ex]
&= \frac{4}{7} u^{\frac{7}{4}} - 2(\frac{4}{3})u^{\frac{3}{4}} + c \\[2ex]
&= \frac{4}{7} (x+2)^{\frac{7}{4}} - (\frac{8}{3})(x+2)^{\frac{3}{4}} +c \\[2ex]
&= \frac{4}{7} (x+2)^{\frac{7}{4}} - \frac{8}{3} (x+2)^{\frac{3}{4}} +c \\[2ex]


\end{align}
\end{align}


</math>
</math>

Latest revision as of 22:21, 7 September 2022