5.3 The Fundamental Theorem of Calculus/23: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
&=\frac{5\sqrt[5]{(1)^9}}{9}-\frac{5 \sqrt[5]{(0)^9}}{9} \\[2ex]
&=\frac{5\sqrt[5]{(1)^9}}{9}-\frac{5 \sqrt[5]{(0)^9}}{9} \\[2ex]


&=\cfrac{5}{9}
&=\frac{5}{9}


\end{align}
\end{align}
</math>
</math>

Revision as of 22:00, 7 September 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{0}^{1}x^{\frac {4}{5}}dx&={\frac {x^{{\frac {4}{5}}+1}}{{\frac {4}{5}}+1}}{\Bigg |}_{0}^{1}={\frac {x^{\frac {9}{5}}}{\frac {9}{5}}}{\Bigg |}_{0}^{1}\\[2ex]&={\frac {5{\sqrt[{5}]{(1)^{9}}}}{9}}-{\frac {5{\sqrt[{5}]{(0)^{9}}}}{9}}\\[2ex]&={\frac {5}{9}}\end{aligned}}}