6.2 Trigonometric Functions: Unit Circle Approach/79: Difference between revisions
No edit summary |
No edit summary |
||
| Line 13: | Line 13: | ||
\cos{(\theta)} &= \frac{-3}{5} & \sec{(\theta)} &= \frac{5}{-3}\\[2ex] | \cos{(\theta)} &= \frac{-3}{5} & \sec{(\theta)} &= \frac{5}{-3}\\[2ex] | ||
\tan{(\theta)} &= \frac{ | \tan{(\theta)} &= \frac{-3}{2} & \cot{(\theta)} &= \frac{-3}{4} \\[2ex] | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 15:56, 7 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \theta \rightarrow x=2, \, y=-3, \, r= \sqrt{13} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 9 + 16 = 25 }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \sqrt{25} = 5 = r }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \sin{(\theta)} &= \frac{4}{5} & \csc{(\theta)} &= \frac{5}{4}\\[2ex] \cos{(\theta)} &= \frac{-3}{5} & \sec{(\theta)} &= \frac{5}{-3}\\[2ex] \tan{(\theta)} &= \frac{-3}{2} & \cot{(\theta)} &= \frac{-3}{4} \\[2ex] \end{align} }