5.5 The Substitution Rule/21: Difference between revisions
No edit summary |
No edit summary |
||
| Line 11: | Line 11: | ||
2du &= \frac{1}{\sqrt{t}} dx | 2du &= \frac{1}{\sqrt{t}} dx | ||
\end{align} | \end{align} | ||
</math> | |||
<math> | |||
2\int \cos {u} du = 2 \sin{u}+c = 2 \sin(\sqrt{u}) + c | |||
</math> | </math> | ||
Revision as of 15:38, 7 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int \frac{\cos{(\sqrt{t})}}{\sqrt{t}} dt = 2\int \cos {u} du = 2 \sin{u}+c = 2 \sin(\sqrt{u}) + c }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \sqrt{u} \\[2ex] du &= \frac{1}{2}\ \frac{1}{\sqrt{t}} dx \\[2ex] 2du &= \frac{1}{\sqrt{t}} dx \end{align} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 2\int \cos {u} du = 2 \sin{u}+c = 2 \sin(\sqrt{u}) + c }