5.5 The Substitution Rule/65: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 9: | Line 9: | ||
\begin{align} | \begin{align} | ||
u &= x-1 u+1 &= x | u &= x-1 u+1 &= x | ||
\\[2ex] | \\[2ex] | ||
du &= 2 dx \\[2ex] | du &= 2 dx \\[2ex] | ||
Revision as of 09:29, 7 September 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{1}^{2}x{\sqrt {x-1}}dx=\int _{0}^{1}u+1{\sqrt {u}}du=\int _{0}^{1}(u+1)({\sqrt {u}})=\int _{0}^{1}u^{\frac {3}{2}}+{\sqrt {u}}du={\frac {2}{5}}U^{\frac {5}{2}}+{\frac {2}{3}}U^{\frac {3}{2}}|_{0}^{1}={\frac {2}{5}}+{\frac {2}{3}}={\frac {16}{15}}}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= x-1 u+1 &= x \\[2ex] du &= 2 dx \\[2ex] \frac{1}{2} du &= dx \end{align} }