5.5 The Substitution Rule/65: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
\int_{1}^{2} x \sqrt{x-1} dx = \int_{0}^{1} u+1 \sqrt{u}du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} u^ \frac{3}{2} + \sqrt{u}du = \frac{2}{5} U^\frac{5}{2} + \frac{2}{3} U^\frac{3}{2}| _{0}^{1}  =\frac{2}{5} + \frac{2}{3} = \frac{16}{15}  
\int_{1}^{2} x \sqrt{x-1} dx = \int_{0}^{1} u+1 \sqrt{u}du = \int_{0}^{1}(u + 1)(\sqrt{u}) = \int_{0}^{1} u^ \frac{3}{2} + \sqrt{u}du = \frac{2}{5} U^\frac{5}{2} + \frac{2}{3} U^\frac{3}{2}| _{0}^{1}  =\frac{2}{5} + \frac{2}{3} = \frac{16}{15}  


</math>
<math>
\begin{align}
u &= X-1
  \\[2ex]
du &= \frac{1}{2}\ \frac{1}{\sqrt{t}} dx \\[2ex]
2du &= \frac{1}{\sqrt{t}} dx
\end{align}
</math>
</math>

Revision as of 09:27, 7 September 2022


Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}u&=X-1\\[2ex]du&={\frac {1}{2}}\ {\frac {1}{\sqrt {t}}}dx\\[2ex]2du&={\frac {1}{\sqrt {t}}}dx\end{aligned}}}