5.5 The Substitution Rule/41: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<math> | <math> | ||
\int \frac{1}{\sqrt{1-x^{2}}} = \int \frac{1}{u} du = \ln |u| +c = \ln |\arcsin {x}| + c | \int \frac{1}{\sqrt{1-x^{2}u}} = \int \frac{1}{u} du = \ln |u| +c = \ln |\arcsin {x}| + c | ||
</math> | </math> | ||
Revision as of 09:09, 7 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int \frac{1}{\sqrt{1-x^{2}u}} = \int \frac{1}{u} du = \ln |u| +c = \ln |\arcsin {x}| + c }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \arcsin {x} \\[2ex] du &= \frac{1}{\sqrt{1-x^2}} dx \\[2ex] \end{align} }