5.5 The Substitution Rule/21: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 1: | Line 1: | ||
<math> | <math> | ||
\int \frac{\cos{(\sqrt{t})}}{\sqrt{t}} dt = \int \sqrt{u} | \int \frac{\cos{(\sqrt{t})}}{\sqrt{t}} dt = \int \sqrt{u} = | ||
</math> | </math> | ||
Revision as of 08:47, 7 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int \frac{\cos{(\sqrt{t})}}{\sqrt{t}} dt = \int \sqrt{u} = }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= \sqrt{u} \\[2ex] du &= \frac{1}{2}\ \frac{1}{\sqrt{t}} dx \\[2ex] 2du &= \frac{1}{\sqrt{t}} dx \end{align} }