5.5 The Substitution Rule/21: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 9: | Line 9: | ||
u &= \sqrt{u} | u &= \sqrt{u} | ||
\\[2ex] | \\[2ex] | ||
du &= \frac{1}{2}\ \frac{1}{\sqrt{t}} | du &= \frac{1}{2}\ \frac{1}{\sqrt{t}} dx \\[2ex] | ||
\frac{1}{\pi}du &= dx | \frac{1}{\pi}du &= dx | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 08:45, 7 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int \frac{\cos{(\sqrt{t})}}{\sqrt{t}} dt = \int \sqrt{u} }
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}u&={\sqrt {u}}\\[2ex]du&={\frac {1}{2}}\ {\frac {1}{\sqrt {t}}}dx\\[2ex]{\frac {1}{\pi }}du&=dx\end{aligned}}}