5.3 The Fundamental Theorem of Calculus/29: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:


&= (\frac{2(9)^{3/2}}{3})-2(9)^{1/2})-(\frac{2(1)^{3/2}}{3}) - 2(1)^{1/2}) = (\frac{54}{3} - 6) - (\frac{2}{3}-2)  
&= (\frac{2(9)^{3/2}}{3})-2(9)^{1/2})-(\frac{2(1)^{3/2}}{3}) - 2(1)^{1/2}) = (\frac{54}{3} - 6) - (\frac{2}{3}-2)  
&=\frac{52}{3}-4=\frac{40}{3}
&= \frac{52}{3}-4=\frac{40}{3}





Revision as of 02:48, 7 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{1}^{9}\frac{x-1}{\sqrt{x}} dx &= \int_{1}^{9}\frac{x}{\sqrt{x}}-\frac{1}{\sqrt{x}} = \int_{1}^{9}\frac{x}{x^{1/2}}-\frac{1}{x^{1/2}} = \int_{1}^{9}x^{1/2} -x^{-1/2} = \int_{1}^{9}\frac{2x^{3/2}}{3} - 2x^{1/2} \bigg|_{1}^{9} \\[2ex] &= (\frac{2(9)^{3/2}}{3})-2(9)^{1/2})-(\frac{2(1)^{3/2}}{3}) - 2(1)^{1/2}) = (\frac{54}{3} - 6) - (\frac{2}{3}-2) &= \frac{52}{3}-4=\frac{40}{3} \end{align} }