5.3 The Fundamental Theorem of Calculus/37: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.3 The Fundamental Theorem of Calculus/37" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
| (33 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
<math> | |||
<math> | \begin{align} | ||
\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}}\frac{6}{\sqrt{1-t^2}}\,dt &= 6\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}}\frac{1}{\sqrt{1-t^2}}\,dt\\[2ex] | |||
[ | &=6\arcsin{(x)}\bigg|_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \\[2ex] | ||
&=\left[6\arcsin\left(\frac{\sqrt{3}}{2}\right)\right]-\left[6\arcsin{\left(\frac{1}{2}\right)}\right] \\[2ex] | |||
&=\left[6\cdot\frac{\pi}{3}\right]-\left[6\cdot\frac{\pi}{6}\right] = 2\pi-\pi \\[2ex] | |||
&=\pi | |||
[ | |||
[ | \end{align} | ||
</math> | |||
[ | |||
[ | |||
Latest revision as of 21:59, 6 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}}\frac{6}{\sqrt{1-t^2}}\,dt &= 6\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}}\frac{1}{\sqrt{1-t^2}}\,dt\\[2ex] &=6\arcsin{(x)}\bigg|_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \\[2ex] &=\left[6\arcsin\left(\frac{\sqrt{3}}{2}\right)\right]-\left[6\arcsin{\left(\frac{1}{2}\right)}\right] \\[2ex] &=\left[6\cdot\frac{\pi}{3}\right]-\left[6\cdot\frac{\pi}{6}\right] = 2\pi-\pi \\[2ex] &=\pi \end{align} }