5.3 The Fundamental Theorem of Calculus/31: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
m (Protected "5.3 The Fundamental Theorem of Calculus/31" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
| (6 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
<math> \int_{0}^{\frac{\pi}{4}}\sec^{2}(t)\,dt = \ | <math> | ||
\int_{0}^{\frac{\pi}{4}}\sec^{2}(t)\,dt = \tan(t)\bigg|_{0}^{\frac{\pi}{4}}=\tan\left(\frac{\pi}{4}\right)-\tan(0)=1-0=1 | |||
</math> | </math> | ||
Latest revision as of 21:25, 6 September 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle \int _{0}^{\frac {\pi }{4}}\sec ^{2}(t)\,dt=\tan(t){\bigg |}_{0}^{\frac {\pi }{4}}=\tan \left({\frac {\pi }{4}}\right)-\tan(0)=1-0=1}