5.3 The Fundamental Theorem of Calculus/27: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:
&= \left(\frac{2x^{1+1}}{1+1}+\frac{x^{6+1}}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2} \\[2ex]
&= \left(\frac{2x^{1+1}}{1+1}+\frac{x^{6+1}}{6+1}\right)\bigg|_{0}^{2}=\left(x^2+\frac{x^7}{7}\right)\bigg|_{0}^{2} \\[2ex]


&= \left((2)^2-\frac{(2)^7}{7}\right)+\left((0)^2+\frac{(0)^7}{7}\right) \\[2ex]
&= \left((2)^2-\frac{(2)^7}{7}\right)-\left((0)^2+\frac{(0)^7}{7}\right) \\[2ex]


&= \left[4+\frac{2^7}{7}\right]-[0] \\[2ex]
&= \left[4+\frac{2^7}{7}\right]-[0] \\[2ex]

Revision as of 21:16, 6 September 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{0}^{2}x(2+x^{5})\,dx&=\int _{0}^{2}(2x+x^{6})\,dx=\int _{0}^{2}(2x+x^{6})\,dx\\[2ex]&=\left({\frac {2x^{1+1}}{1+1}}+{\frac {x^{6+1}}{6+1}}\right){\bigg |}_{0}^{2}=\left(x^{2}+{\frac {x^{7}}{7}}\right){\bigg |}_{0}^{2}\\[2ex]&=\left((2)^{2}-{\frac {(2)^{7}}{7}}\right)-\left((0)^{2}+{\frac {(0)^{7}}{7}}\right)\\[2ex]&=\left[4+{\frac {2^{7}}{7}}\right]-[0]\\[2ex]&={\frac {156}{7}}\end{aligned}}}