5.3 The Fundamental Theorem of Calculus/27: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 2: Line 2:
\begin{align}
\begin{align}


\int_2^0 x(2+x^5)dx = \int_2^0 (2x+x^6)dx &= -\int_0^2 (2x+x^6)dx
\int_2^0 x(2+x^5)\,dx = \int_2^0 (2x+x^6)\,dx &= -\int_0^2 (2x+x^6)\,dx





Revision as of 21:03, 6 September 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{2}^{0}x(2+x^{5})\,dx=\int _{2}^{0}(2x+x^{6})\,dx&=-\int _{0}^{2}(2x+x^{6})\,dx=\left({\frac {2x^{2}}{1+1}}+{\frac {x^{6}+1}{6+1}}\right){\bigg |}_{0}^{2}=\left(x^{2}+{\frac {x^{7}}{7}}\right){\bigg |}_{0}^{2}=\left((2)^{2}+{\frac {(2)^{7}}{7}}\right)-\left((0)^{2}+{\frac {0^{7}}{7}}\right)=4+{\frac {2^{7}}{7}}={\frac {156}{7}}\end{aligned}}}