5.3 The Fundamental Theorem of Calculus/17: Difference between revisions
No edit summary |
m (Protected "5.3 The Fundamental Theorem of Calculus/17" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
| (26 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
<math>y=\int_{1-3x}^{1}\frac{u^3}{1+u^2} du</math> | |||
<math>y=\ | <math> | ||
\frac{d}{dx}(y)=\frac{d}{dx}\left(\int_{1-3x}^{1}\frac{u^3}{1+u^2}\,du\right) = (0)\cdot\frac{(1)^3}{1+(1)^2} | |||
-(-3)\cdot\frac{(1-3x)^3}{1+(1-3x)^2} | |||
</math> | |||
<math> | |||
\text{Therefore, } y' = \frac{3(1-3x)^3}{1+(1-3x)^2} | |||
</math> | |||
Latest revision as of 20:31, 6 September 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle y=\int _{1-3x}^{1}{\frac {u^{3}}{1+u^{2}}}du}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(y)=\frac{d}{dx}\left(\int_{1-3x}^{1}\frac{u^3}{1+u^2}\,du\right) = (0)\cdot\frac{(1)^3}{1+(1)^2} -(-3)\cdot\frac{(1-3x)^3}{1+(1-3x)^2} }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \text{Therefore, } y' = \frac{3(1-3x)^3}{1+(1-3x)^2} }