5.3 The Fundamental Theorem of Calculus/17: Difference between revisions
No edit summary |
No edit summary |
||
| Line 2: | Line 2: | ||
<math>\frac{d}{dx}(g(x))=\frac{d}{dx}\left(\int_{1-3x}^{1}\frac{u^3}{(1+u^2)} du\right) = (0)\cdot\frac{(1)^3}{(1+(1)^2)} | <math> | ||
\frac{d}{dx}(g(x))=\frac{d}{dx}\left(\int_{1-3x}^{1}\frac{u^3}{(1+u^2)} du\right) = (0)\cdot\frac{(1)^3}{(1+(1)^2)} | |||
</math> | |||
<math> | |||
\text{Therefore, } g'(x) = y^{2}\sin{(y)} | |||
</math> | |||
Revision as of 20:24, 6 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g(x)=\int_{1-3x}^{1}\frac{u^3}{(1+u^2)} du}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dx}(g(x))=\frac{d}{dx}\left(\int_{1-3x}^{1}\frac{u^3}{(1+u^2)} du\right) = (0)\cdot\frac{(1)^3}{(1+(1)^2)} }
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\text{Therefore, }}g'(x)=y^{2}\sin {(y)}}