5.3 The Fundamental Theorem of Calculus/13: Difference between revisions
Jump to navigation
Jump to search
No edit summary Tag: Manual revert |
m (Protected "5.3 The Fundamental Theorem of Calculus/13" ([Edit=Allow only administrators] (indefinite) [Move=Allow only administrators] (indefinite))) |
||
| (11 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
<math>h(x)=\int_{2}^{1/x}\arctan(t)dt</math> <br><br> | <math>h(x)=\int_{2}^{1/x}\arctan(t)dt</math> <br><br> | ||
<math>\frac{d}{dx}\left[h(x)\right] | <math>\frac{d}{dx}\left[h(x)\right] | ||
<math>\text{Therefore, } | =\frac{d}{dx}\left[\int_{2}^{1/x}\arctan(t)dt\right] | ||
=\frac{-1}{x^2}\cdot\left(\arctan\left(\frac{1}{x}\right)\right)-0\cdot(\arctan\left(2)\right) | |||
=\frac{-\arctan\frac{1}{x}}{x^2}</math> <br><br> | |||
<math>\text{Therefore, } h'(x)=\frac{-\arctan\frac{1}{x}}{x^2}</math> | |||
Latest revision as of 20:15, 6 September 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\frac {d}{dx}}\left[h(x)\right]={\frac {d}{dx}}\left[\int _{2}^{1/x}\arctan(t)dt\right]={\frac {-1}{x^{2}}}\cdot \left(\arctan \left({\frac {1}{x}}\right)\right)-0\cdot (\arctan \left(2)\right)={\frac {-\arctan {\frac {1}{x}}}{x^{2}}}}