5.3 The Fundamental Theorem of Calculus/15: Difference between revisions
No edit summary Tag: Manual revert |
No edit summary |
||
| Line 13: | Line 13: | ||
<math> | <math> | ||
\text{Therefore, } y' = \sec^{2}(x)\cdot\sqrt{tan(x)+\sqrt tan(x)}) | \text{Therefore, } y' = \sec^{2}(x)\cdot\sqrt{tan(x)+\sqrt{tan(x)}}) | ||
</math> | </math> | ||
Revision as of 20:12, 6 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle y=\int_{0}^{tan(x)}\sqrt{t+\sqrt t}\,dt}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \frac{d}{dx}(y)= \frac{d}{dx}\left[\int_{0}^{tan(x)}\sqrt{t+\sqrt t}\,dt\right]=\sec^{2}(x)\cdot\sqrt{tan(x)+\sqrt{tan(x)}})-0\cdot\sqrt{0+\sqrt 0}\,=\sec^{2}(x)\cdot\sqrt{tan(x)+\sqrt{tan(x)}}) \end{align} }