5.3 The Fundamental Theorem of Calculus/9: Difference between revisions
No edit summary |
No edit summary |
||
| Line 5: | Line 5: | ||
\frac{d}{dy}\left[g(y)\right] = \frac{d}{dy}\left[\int_{2}^{y}t^2\sin{(t)}dt\right] | \frac{d}{dy}\left[g(y)\right] = \frac{d}{dy}\left[\int_{2}^{y}t^2\sin{(t)}dt\right] | ||
= 1\cdot(y^{2}sin{(y)})-0\cdot(2^{2}sin{(2)})</math><br> | |||
<math>= y^{2} sin{(y)}</math> | <math>= y^{2} sin{(y)}</math> | ||
Revision as of 19:52, 6 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle g(y)= \int_{2}^{y}t^2\sin{(t)}dt}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{d}{dy}\left[g(y)\right] = \frac{d}{dy}\left[\int_{2}^{y}t^2\sin{(t)}dt\right] = 1\cdot(y^{2}sin{(y)})-0\cdot(2^{2}sin{(2)})}
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle =y^{2}sin{(y)}}