6.2 Trigonometric Functions: Unit Circle Approach/61: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math> \frac{5\pi}{6}
<math> \frac{5\pi}{6}
 
\sin({\frac{5\pi}{6}})=1 \sec{\frac{5\pi}{6}}=\frac{1}{1}=1
 
\sin{\frac{5\pi}{6}}=1 \sec{\frac{5\pi}{6}}=\frac{1}{1}=1
\cos{\frac{5\pi}{6}}=0 \csc{\frac{5\pi}{6}}=\frac{1}{0}=Undefined
\cos{\frac{5\pi}{6}}=0 \csc{\frac{5\pi}{6}}=\frac{1}{0}=Undefined
\tan{\frac{5\pi}{6}}=\frac{1}{0}=Undefind \cot{\frac{5\pi}{6}}=\frac{0}{1}=0
\tan{\frac{5\pi}{6}}=\frac{1}{0}=Undefind \cot{\frac{5\pi}{6}}=\frac{0}{1}=0
</math>
</math>

Revision as of 16:18, 6 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{5\pi}{6} \sin({\frac{5\pi}{6}})=1 \sec{\frac{5\pi}{6}}=\frac{1}{1}=1 \cos{\frac{5\pi}{6}}=0 \csc{\frac{5\pi}{6}}=\frac{1}{0}=Undefined \tan{\frac{5\pi}{6}}=\frac{1}{0}=Undefind \cot{\frac{5\pi}{6}}=\frac{0}{1}=0 }