5.5 The Substitution Rule/69: Difference between revisions
No edit summary |
No edit summary |
||
| Line 22: | Line 22: | ||
&= \int_{1}^{e+1} \left(\frac{1}{u}\right)du \\[2ex] | &= \int_{1}^{e+1} \left(\frac{1}{u}\right)du \\[2ex] | ||
&= \left(\ln (|u|) \right) \bigg|_{1}^{e+1} \\[2ex] | &= \left(\ln (|u|) \right) \bigg|_{1}^{e+1} \\[2ex] | ||
&= \ln (|e+1|) - \ln (|1|) | |||
&= \ln(e+1) - 0 = \ln (e+1) | |||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 16:02, 6 September 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) }
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} u &= e^z + z \\[2ex] du &= (e^z +1)dx \\[2ex] \end{align} }
New upper limit: Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle 1 = e^1 + 1 = e + 1 }
New lower limit: Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 0=e^{0}+0=1}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \begin{align} \int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) &= \int_{0}^{1} \left((e^z +1)dx (\frac{1}{e^z +z}) \right) \\[2ex] &= \int_{1}^{e+1} \left(\frac{1}{u}\right)du \\[2ex] &= \left(\ln (|u|) \right) \bigg|_{1}^{e+1} \\[2ex] &= \ln (|e+1|) - \ln (|1|) &= \ln(e+1) - 0 = \ln (e+1) \end{align} }