5.5 The Substitution Rule/69: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 19: Line 19:
\begin{align}
\begin{align}
\int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) &= \int_{0}^{1} \left((e^z +1)dx (\frac{1}{e^z +z}) \right)
\int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) &= \int_{0}^{1} \left((e^z +1)dx (\frac{1}{e^z +z}) \right)
&= \int_{1}^{e+1} \left(\frac{1}{u}\right)du
&= \int_{1}^{e+1} \left(\frac{1}{u}\right)du
&= \left(\ln (abs(u)) \right)  
&= \left(\ln (abs(u)) \right)  

Revision as of 15:58, 6 September 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}u&=e^{z}+z\\[2ex]du&=(e^{z}+1)dx\\[2ex]\end{aligned}}}

New upper limit: Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 1=e^{1}+1=e+1}
New lower limit: