5.5 The Substitution Rule/69: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 19: | Line 19: | ||
\begin{align} | \begin{align} | ||
\int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) &= \int_{0}^{1} \left((e^z +1)dx (\frac{1}{e^z +z}) \right) | \int_{0}^{1} \left(\frac{e^z + 1}{e^z + z}\right) &= \int_{0}^{1} \left((e^z +1)dx (\frac{1}{e^z +z}) \right) | ||
&= \int_{1}^{e+1} \left(\frac{1}{u}\right)du | &= \int_{1}^{e+1} \left(\frac{1}{u}\right)du | ||
&= \left(\ln (abs(u)) \right) | &= \left(\ln (abs(u)) \right) | ||
Revision as of 15:58, 6 September 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}u&=e^{z}+z\\[2ex]du&=(e^{z}+1)dx\\[2ex]\end{aligned}}}
New upper limit: Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle 1=e^{1}+1=e+1}
New lower limit: