5.5 The Substitution Rule/59: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 20: Line 20:
\begin{align}
\begin{align}
\int_{1}^{2}\frac{ e^\frac{1}{x}}{x^2}\,dx &=\int_{1}^{2} e^\frac{1}{x}(\frac{1}{x^2}\,dx)
\int_{1}^{2}\frac{ e^\frac{1}{x}}{x^2}\,dx &=\int_{1}^{2} e^\frac{1}{x}(\frac{1}{x^2}\,dx)
&=\int_{1}^{\frac{1}{2}}e^u\,-du \\[2ex]
&=\int_{1}^{\frac{1}{2}}e^u\,(-du) \\[2ex]
&=-\int_{1}^{\frac{1}{2}}e^u\,du \\[2ex]
&=-\int_{1}^{\frac{1}{2}}e^u\,du \\[2ex]
&=-e^u\bigg|_{1}^{\frac{1}{2}} \\[2ex]
&=-e^u\bigg|_{1}^{\frac{1}{2}} \\[2ex]
&=-\sqrt{e} - (-e^1) \\[2ex]
&=e-\sqrt{e}
&=e-\sqrt{e}
\end {align}
\end {align}
</math>
</math>

Latest revision as of 02:04, 6 September 2022





New upper limit:
New lower limit: