5.4 Indefinite Integrals and the Net Change Theorem/33: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 7: | Line 7: | ||
&= \sqrt{5}\times2x^\frac{1}{2}\bigg|_{1}^{4} = \sqrt{5}\times2\sqrt{x}\bigg|_{1}^{4} = 2\sqrt{5x}\bigg|_{1}^{4} \\[2ex] | &= \sqrt{5}\times2x^\frac{1}{2}\bigg|_{1}^{4} = \sqrt{5}\times2\sqrt{x}\bigg|_{1}^{4} = 2\sqrt{5x}\bigg|_{1}^{4} \\[2ex] | ||
&= 2\sqrt{5\times4}-2\sqrt{5\times1 | &= 2\sqrt{5\times4}-2\sqrt{5\times1} \\[2ex] | ||
&= 2\sqrt{20}-2\sqrt{5 | &= 2\sqrt{20}-2\sqrt{5} = 4\sqrt{5}-2\sqrt{5} = 2\sqrt{5} | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Revision as of 21:38, 3 September 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{1}^{4}{\sqrt {\frac {5}{x}}}dy&=\int _{1}^{4}{\frac {\sqrt {5}}{\sqrt {x}}}dx=5^{\frac {1}{2}}\int _{1}^{4}x^{\frac {-1}{2}}dx\\[2ex]&={\sqrt {5}}\times 2x^{\frac {1}{2}}{\bigg |}_{1}^{4}={\sqrt {5}}\times 2{\sqrt {x}}{\bigg |}_{1}^{4}=2{\sqrt {5x}}{\bigg |}_{1}^{4}\\[2ex]&=2{\sqrt {5\times 4}}-2{\sqrt {5\times 1}}\\[2ex]&=2{\sqrt {20}}-2{\sqrt {5}}=4{\sqrt {5}}-2{\sqrt {5}}=2{\sqrt {5}}\end{aligned}}}