5.4 Indefinite Integrals and the Net Change Theorem/33: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 7: Line 7:
&= \sqrt{5}\times2x^\frac{1}{2}\bigg|_{1}^{4} = \sqrt{5}\times2\sqrt{x}\bigg|_{1}^{4} = 2\sqrt{5x}\bigg|_{1}^{4} \\[2ex]
&= \sqrt{5}\times2x^\frac{1}{2}\bigg|_{1}^{4} = \sqrt{5}\times2\sqrt{x}\bigg|_{1}^{4} = 2\sqrt{5x}\bigg|_{1}^{4} \\[2ex]


&= 2\sqrt{5\times4}-2\sqrt{5\times1}\bigg|_{1}^{4} \\[2ex]
&= 2\sqrt{5\times4}-2\sqrt{5\times1} \\[2ex]
   
   
&= 2\sqrt{20}-2\sqrt{5}\bigg|_{1}^{4} = 4\sqrt{5}-2\sqrt{5}\bigg|_{1}^{4} = 2\sqrt{5}
&= 2\sqrt{20}-2\sqrt{5} = 4\sqrt{5}-2\sqrt{5} = 2\sqrt{5}
\end{align}
\end{align}
</math>
</math>

Revision as of 21:38, 3 September 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\int _{1}^{4}{\sqrt {\frac {5}{x}}}dy&=\int _{1}^{4}{\frac {\sqrt {5}}{\sqrt {x}}}dx=5^{\frac {1}{2}}\int _{1}^{4}x^{\frac {-1}{2}}dx\\[2ex]&={\sqrt {5}}\times 2x^{\frac {1}{2}}{\bigg |}_{1}^{4}={\sqrt {5}}\times 2{\sqrt {x}}{\bigg |}_{1}^{4}=2{\sqrt {5x}}{\bigg |}_{1}^{4}\\[2ex]&=2{\sqrt {5\times 4}}-2{\sqrt {5\times 1}}\\[2ex]&=2{\sqrt {20}}-2{\sqrt {5}}=4{\sqrt {5}}-2{\sqrt {5}}=2{\sqrt {5}}\end{aligned}}}