5.5 The Substitution Rule/19: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:
& = \ \frac{u^{2+1}}{2+1}du \ = \ \frac{1}{3}u^3+C \\[2ex]
& = \ \frac{u^{2+1}}{2+1}du \ = \ \frac{1}{3}u^3+C \\[2ex]


u=\ln(x)
& u=\ln(x)
du=\frac{1}{x}dx
& du=\frac{1}{x}dx
du=\frac{dx}{x}
 


& = \ \frac{1}{3}(\ln(x))^3+C
& = \ \frac{1}{3}(\ln(x))^3+C

Revision as of 06:58, 3 September 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}&\int {\frac {\left(\ln(x)\right)^{2}}{x}}dx\ =\ \int u^{2}du\\[2ex]&=\ {\frac {u^{2+1}}{2+1}}du\ =\ {\frac {1}{3}}u^{3}+C\\[2ex]&u=\ln(x)&du={\frac {1}{x}}dx&=\ {\frac {1}{3}}(\ln(x))^{3}+C\end{aligned}}}