5.4 Indefinite Integrals and the Net Change Theorem/37: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 5: Line 5:


& =\tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}}\\[2ex]
& =\tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}}\\[2ex]
& =\tan({\frac{\pi}{4}}) + \frac{\pi}{4} - \left(\tan(\theta)+0\right)\\[2ex]
& =\tan({\frac{\pi}{4}}) + \frac{\pi}{4} \\[2ex]
& =1+\frac{\pi}{4}
& =1+\frac{\pi}{4}



Revision as of 06:07, 3 September 2022

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}&\int _{0}^{\frac {\pi }{4}}\left({\frac {1+\cos ^{2}(\theta )}{\cos ^{2}(\theta )}}\right)d\theta \ =\ \int _{0}^{\frac {\pi }{4}}{\frac {1}{\cos ^{2}(\theta )}}+{\frac {\cos ^{2}(\theta )}{\cos ^{2}(\theta )}}\ =\ \int _{0}^{\frac {\pi }{4}}{\frac {1}{\cos ^{2}(\theta )}}+1\\[2ex]&=\tan({\theta })+\theta \ {\bigg |}_{0}^{\frac {\pi }{4}}\\[2ex]&=\tan({\frac {\pi }{4}})+{\frac {\pi }{4}}\\[2ex]&=1+{\frac {\pi }{4}}\end{aligned}}}