5.4 Indefinite Integrals and the Net Change Theorem/37: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
| Line 5: | Line 5: | ||
& =\tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}}\\[2ex] | & =\tan({\theta}) + \theta \ \bigg|_{0}^{\frac{\pi}{4}}\\[2ex] | ||
& =\tan({\frac{\pi}{4}}) + \frac{\pi}{4} | & =\tan({\frac{\pi}{4}}) + \frac{\pi}{4} \\[2ex] | ||
& =1+\frac{\pi}{4} | & =1+\frac{\pi}{4} | ||
Revision as of 06:07, 3 September 2022
Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}&\int _{0}^{\frac {\pi }{4}}\left({\frac {1+\cos ^{2}(\theta )}{\cos ^{2}(\theta )}}\right)d\theta \ =\ \int _{0}^{\frac {\pi }{4}}{\frac {1}{\cos ^{2}(\theta )}}+{\frac {\cos ^{2}(\theta )}{\cos ^{2}(\theta )}}\ =\ \int _{0}^{\frac {\pi }{4}}{\frac {1}{\cos ^{2}(\theta )}}+1\\[2ex]&=\tan({\theta })+\theta \ {\bigg |}_{0}^{\frac {\pi }{4}}\\[2ex]&=\tan({\frac {\pi }{4}})+{\frac {\pi }{4}}\\[2ex]&=1+{\frac {\pi }{4}}\end{aligned}}}