6.2 Trigonometric Functions: Unit Circle Approach/47: Difference between revisions

From Mr. V Wiki Math
Jump to navigation Jump to search
No edit summary
No edit summary
Line 6: Line 6:
\sin{\left(\frac{2\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{2\pi}{3}\right)} &= \frac{{1}} \frac{\sqrt{3}}{2} \cdot{2} = \frac{2}{\sqrt{3}} \cdot{\sqrt{3}} = \frac{2\sqrt{3}}{3} \\[2ex]
\sin{\left(\frac{2\pi}{3}\right)} &= \frac{\sqrt{3}}{2} & \csc{\left(\frac{2\pi}{3}\right)} &= \frac{{1}} \frac{\sqrt{3}}{2} \cdot{2} = \frac{2}{\sqrt{3}} \cdot{\sqrt{3}} = \frac{2\sqrt{3}}{3} \\[2ex]


\cos{\left(\frac{2\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{2\pi}{3}\right)} &= \frac{{2}}{-\sqrt{3}}\cdot\frac{\sqrt{3}}{\sqrt{3}} = -\frac{2\sqrt{3}}{3}\\[2ex]  
\cos{\left(\frac{2\pi}{3}\right)} &= -\frac{1}{2} & \sec{\left(\frac{2\pi}{3}\right)} &= \frac{1}{-\frac{1}{2}} \\[2ex]  


\tan{\left(\frac{2\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \cdot{2} = -\frac{\sqrt{3}}{1} = -\sqrt{3}
\tan{\left(\frac{2\pi}{3}\right)} &= \frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}} \cdot{2} = -\frac{\sqrt{3}}{1} = -\sqrt{3}

Revision as of 16:20, 1 September 2022

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \frac{2\pi}{3} \Rightarrow \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)}

Failed to parse (Conversion error. Server ("https://en.wikipedia.org/api/rest_") reported: "Cannot get mml. Server problem."): {\displaystyle {\begin{aligned}\sin {\left({\frac {2\pi }{3}}\right)}&={\frac {\sqrt {3}}{2}}&\csc {\left({\frac {2\pi }{3}}\right)}&={\frac {1}{\frac {\sqrt {3}}{2}}}\cdot {2}={\frac {2}{\sqrt {3}}}\cdot {\sqrt {3}}={\frac {2{\sqrt {3}}}{3}}\\[2ex]\cos {\left({\frac {2\pi }{3}}\right)}&=-{\frac {1}{2}}&\sec {\left({\frac {2\pi }{3}}\right)}&={\frac {1}{-{\frac {1}{2}}}}\\[2ex]\tan {\left({\frac {2\pi }{3}}\right)}&={\frac {\frac {\sqrt {3}}{2}}{-{\frac {1}{2}}}}\cdot {2}=-{\frac {\sqrt {3}}{1}}=-{\sqrt {3}}&\cot {\left({\frac {2\pi }{3}}\right)}&=-{\frac {\sqrt {3}}{1}}=-{\sqrt {3}}\\[2ex]\end{aligned}}}