5.4 Indefinite Integrals and the Net Change Theorem/13: Difference between revisions
No edit summary Tag: Manual revert |
No edit summary |
||
| Line 1: | Line 1: | ||
<math>\int_{}^{}(\sin(x)+\sinh(x))dx \qquad \qquad \text{Indefinite integrals used }</math> <br><br><math>=\int_{}^{}(\sin(x))dx+\int_{}^{}(\sinh(x))dx</math> <br><br> | <math>\int_{}^{}(\sin(x)+\sinh(x))dx \qquad \qquad \qquad \qquad \text{Indefinite integrals used }</math> <br><br><math>=\int_{}^{}(\sin(x))dx+\int_{}^{}(\sinh(x))dx</math> <br><br> | ||
<math>=-\cos(x)+\cosh(x)+c</math> <br><br> | <math>=-\cos(x)+\cosh(x)+c</math> <br><br> | ||
<br><br> | <br><br> | ||
Revision as of 19:30, 30 August 2022
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}(\sin(x)+\sinh(x))dx \qquad \qquad \qquad \qquad \text{Indefinite integrals used }}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle =\int_{}^{}(\sin(x))dx+\int_{}^{}(\sinh(x))dx}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle =-\cos(x)+\cosh(x)+c}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}(\sin(x))dx=-\cos(x)+C}
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://en.wikipedia.org/api/rest_v1/":): {\displaystyle \int_{}^{}(\sinh(x))dx=\cosh(x)+C}